RFQ PA Systems.

Brian Schupbach <schupbach@fnal.gov> CY Tan <cytan@fnal.gov>, et al.

FNAL Proton Source.

30 August 2012

Outline

Current system layout.

Operational summary.

Installation details.

RFQ Driver PA.

T_{width}	P_{peak}	P_{avg}	P_{fwd}	P_{rev}	S_{11}	R_{L}
112 μsec	200 kW	330 W	160 kW	5 kW	-25 dB	14.5 dB

RFQ Cavity tuning.

Local application loop to read phase detector, apply logic, and send out cmds to plunger stepper motor. Successfully tested at correction rates of 1 and 5 sec.

What we've learned.

Power conditioning procedure.

- \bullet Low power CW, 25% of $P_{\rm avg},$ vacuum recovered in <1 hr in most cases.
- High power pulsed RF, better vacuum helps.
- Overall, system was stable enough for beam studies in < 2 hrs.

Cavity tuning.

 Ambient and LCW temperature variations handled by tuning loop.

Driver output

- Very few station trips.
- Output power stable without gradient FB.

PA output.

Driver output.

Installation details.

RFQ driver station.

- Hang and fix 3.125" t-line length to minimize reflections.
- Split and route 201 MHz ref line from LRF1 vxi.
- Move 4616 anode cabinet to Pre-Acc control room.
- Layout and test interlock & LLRF boards.

Buncher station.

- Recycle as much of the current system as possible.
- New cavity tuner control loop.
- New stepper motor controller and mechanics.